rezsimisc

rezsimisc: Наука



Что такое сознание? Да, собственно, всё. Это мелодия, застрявшая в голове, сладость шоколадки, пульсирующая боль от зубной боли, дикая любовь, знание того, что все чувства когда-нибудь гаснут. Происхождение и природа этих переживаний, иногда называемых квалиа, были загадкой с самых первых дней античности и до настоящего времени. Многие современные философы, анализирующие разум, в том числе и Дэниел Деннетт из Университета Тафтса, считают существование сознания настолько вопиющим оскорблением для бессмысленной вселенной из материи и пустоты, что объявляют его иллюзией. То есть, они либо отрицают существование квалиа, либо утверждают, что науке никогда этого не понять.

Если бы это утверждение было истинным, нам не о чем было бы говорить. Все, что нужно было бы объяснить Криштофу Коху, написавшему это эссе, это почему вы, я и все остальные твердо уверены в том, что чувства у нас все-таки есть. Однако убеждение в том, что боль – это иллюзия, эту боль не преуменьшит. А значит, должно быть другое решение проблемы тела и разума. Далее – от первого лица.
Большинство ученых принимают сознание как данность и стремятся понять его связь с объективным миром, описанным наукой. Более четверти века назад Фрэнсис Крик и я решили отложить философские дискуссии на тему сознания, которые привлекали ученых со времен Аристотеля, и поискать физические его отпечатки. Что происходит с возбужденным участком вещества мозга, которое рождает сознание? Как только мы это поймем, мы приблизимся к решению более фундаментальной проблемы.
Мы ищем, в частности, нейронные корреляты сознания (NCC, НКС), определяемые как минимальные нейронные механизмы, которых будет достаточно для любого конкретного сознательного опыта. Что должно произойти в вашем мозгу, чтобы вы испытали зубную боль, например? Должны ли некоторые нервные клетки вибрировать на определенной волшебной частоте? Нужно ли активировать некоторые специальные «нейроны сознания»? В каких областях мозга должны находиться эти клетки?
Нейронные корреляты сознания
При определении НКС, важно понять, где минимум. Мозг в целом можно считать НКС: он генерирует опыт изо дня в день, безостановочно. Но место нахождения сознания может быть дополнительно огорожено. Возьмем, к примеру, спинной мозг – длинный и гибкий «шланг» с нейронами, втиснутыми в кость, с миллиардом нервных клеток. Если спинной мозг будет полностью поврежден в процессе травмы в области шеи, человека парализует в ногах, руках и туловище, он не сможет контролировать кишечник и мочевой пузырь и утратит ощущение тела. Но такие парализованные продолжают наслаждаться жизнью во всем ее разнообразии – они видят, слышат, обоняют, переживают и помнят все таким, каким оно было до печального инцидента. Только ходить не могут, ну и произвольно испражняются.
Или давайте рассмотрим мозжечок, «маленький мозг» под задней частью мозга. Это одна из самых древних схем мозга с точки зрения эволюции, вовлеченная в управление движением, позой, походкой и сложными последовательностями движений. Игра на фортепиано, печать, танцы на льду или скалолазание – вся эта деятельность определяется работой мозжечка. В нем находятся великолепные нейроны – клетки Пуркинье, у которых есть усики и которые распространяются подобно морским кораллам и обладают комплексной электрической динамикой. Также в нем больше всего нейронов, порядка 69 миллиардов, в четыре раза больше, чем в остальных частях мозга, взятых вместе.
Что происходит с сознанием, если мозжечок частично повреждается в результате инсульта или под ножом хирурга? Да ничего. Пациенты с поврежденным мозжечком жалуются на некоторые дефициты, не так хорошо играют на фортепиано или печатают на клавиатуре, но никогда не теряют никаких аспектов сознания. Они слышат, видят и чувствуют себя отлично, сохраняют чувство собственного достоинства, помнят события прошлого и продолжают проецировать себя в будущее. Даже рождение без мозжечка не оказывает сильного влияния на сознательный опыт личности.
Выходит, огромный мозжечковый аппарат не имеет никакого отношения к субъективному опыту. Почему? Важные подсказки можно найти в его схеме, которая является чрезвычайно однородной и параллельной (так же, как батареи могут подключаться параллельно). Мозжечок работает достаточно прямолинейно: один набор нейронов влияет на следующий, а тот передает эстафету третьему. Нет никаких сложных контуров обратной связи, которые отражаются на проходящей электрической активности. (Учитывая время, необходимое для развития сознательного восприятия, большинство теоретиков полагают, что оно должно включать петли обратной связи в кавернозных схемах мозга). Кроме того, мозжечок функционально разделен на сотни или более независимых вычислительных модулей. Каждый из них работает параллельно, с отдельными, не перекрывающимися вводами и выводами, контролируя движения различных моторных или когнитивных систем. Они слабо взаимодействуют – а сознание, наоборот, требует взаимной вовлеченности множества систем.
Один важный урок, который мы извлекли, изучая спинной мозг и мозжечок, состоит в том, что джинн сознания не появляется всякий раз, когда возбуждается какая-либо нервная ткань. Нужно больше. Этот дополнительный фактор встречается в сером веществе, составляющем знаменитую кору головного мозга, внешнюю его поверхность. Это ламинированный лист сложной, взаимосвязанной нервной ткани, размером и шириной с 14-дюймовую пиццу. Два таких листа, многократно сложенных, вместе с их сотнями миллионов проводков – белым веществом – тесно забиты в череп. Все говорит о том, что неокортикальная ткань рождает чувства.
Можно еще больше сузить место нахождения сознания. Возьмем, например, эксперименты, в которых на правый и левый глаз воздействуют разные раздражители. Предположим, левый глаз смотрит на Дональда Трампа, а правый на Хиллари Клинтон. Можно было бы представить, что человек увидит суперпозицию Трампа и Клинтон. В реальности же, вы будете видеть Трампа несколько секунд, после чего он исчезнет и появится Клинтон. Затем она исчезнет и вернется Трамп. Два изображения будут сменять друг друга бесконечно из-за бинокулярного соперничества – войны между глазами за первенство. Поскольку мозг получает двойственный ввод, он не может выбрать между Трампом и Клинтон.
Если, в то же время, вы будете лежать в магнитном сканере, который регистрирует активность мозга, экспериментаторы обнаружат, что широкий набор областей коры – задняя теменная кора – будет играть значительную роль в слежении за тем, что мы видим. Что примечательно, первичная зрительная кора, которая получает и пропускает информацию, которую получает от глаз, не сигнализирует о том, что видит субъект. Такое же разделение труда справедливо для звука и касания: первичная слуховая и первичная соматосенсорная кора не влияют напрямую на содержимое слухового или соматосенсорного опыта. Вместо этого в процесс включается следующий этап – в активной зоне задней теменной коры – который рождает сознательное восприятие.
Больше света прольют два клинических источника причинно-следственной связи: электрическая стимуляция ткани коры и исследование пациентов после утраты конкретных областей в процессе травмы или болезни. Например, прежде чем удалить опухоль мозга или локус эпилептических припадков, нейрохирурги картируют функции ближайших тканей коры, напрямую стимулируя ее электродами. Стимулирование задней горячей зоны может вызвать поток различных ощущений и чувств. Это могут быть вспышки света, геометрические фигуры, гримасы, слуховые или зрительные галлюцинации, ощущение дежа вю, желание двигать определенной конечностью и т.п. Стимулирование передней части коры – совсем другое дело: по большему счету, оно не вызывает никаких прямых переживаний.
Второй источник информации – пациенты неврологов с первой половины 20 века. Иногда хирургам приходилось вырезать большой пояс префронтальной коры для удаления опухолей или для облегчения эпилептических припадков. Примечательно то, насколько необычны эти пациенты. Потеря части лобной доли имела некоторые вредные последствия: у пациентов развилось нежелание сдерживать неприемлемые эмоции или действия, дефицит моторики, неконтролируемые повторения действий или слов. Однако после операции им становилось лучше и они продолжали жить без каких-либо признаков утраты или ухудшения сознательного опыта. И напротив, удаление даже небольших областей задней коры, где находились горячие зоны, могло привести к целому классу проблем с сознанием: пациенты не могли узнавать лица, распознавать движения, цвета или ориентироваться в пространстве.
Таким образом, можно было бы подумать, что взгляды, звуки и другие ощущения жизни, которые мы переживаем, рождаются в областях задней коры. Насколько мы можем судить, почти все сознательные переживания появляются там. В чем же принципиальное различие между этими задними областями и большей частью префронтальной коры, которая не влияет напрямую на субъективное содержимое? Мы не знаем. Впрочем, недавнее открытие указывает на то, что нейробиологи могут быть близки к разгадке.
Счетчик сознания
Медицина нуждается в устройстве, которое сможет надежно выявлять наличие или отсутствие сознания у людей недееспособных или с нарушениями. Во время хирургии, например, пациенты погружаются в наркоз, чтобы оставаться неподвижными и со стабильным кровяным давлением – это позволяет им не чувствовать боли и не обзаводиться травмирующими воспоминаниями. К сожалению, этой цели удается достичь не всегда: каждый год сотни пациентов каким-то образом остаются в сознании под анестезией.
Другая категория пациентов, которые имеют тяжелую черепно-мозговую травму из-за несчастного случая, инфекции или сильного отравления, может жить годами, не имея возможности говорить или отвечать на устные просьбы. Представьте космонавта, плывущего в космосе, который слушает центр управления, пытающийся с ним связаться. Его поврежденный микрофон не передает голос и он кажется совершенно оторванным от мира. Точно так же и пациенты с поврежденным мозгом, не позволяющим им общаться с миром, чувствуют крайнюю форму одиночного заключения.
В начале 2000-х Джулио Тонони из Университета Висконсин-Мэдисона и Марчелло Массимини из Университета Милана в Италии изобрели технику zip-zap, позволяющую определять, в сознании человек или нет. Ученые надевают катушку проводов на череп и «простреливают» ее – посылают в череп мощный импульс магнитной энергии, ненадолго индуцируя электрический ток в нейронах. Это вмешательство, в свою очередь, возбуждает и ингибирует партнерские клетки нейронов в соединенных областях, волной проносится по мозгу, пока не затухнет. Сеть ЭЭГ-датчиков, расположенная за пределами черепа, считывает эти электрические сигналы. Развертываясь со временем, эти следы, каждый из которых соответствует определенному месту в мозге под черепом, складываются в картину.
Эта картина не показывает никаких закономерностей, но и не является совершенно случайной. Она позволяет определить, насколько мозг свободен от сознания, по ритмам. Ученые количественно оценивают эти данные, сжимая их в архив обычным алгоритмом .zip, и получают сложность реакции головного мозга. Волонтеры, которые просыпались, имели «индекс пертурбационной сложности» между 0,31 и 0,7, который падал ниже 0,31 при глубоком сне или анестезии. Массимини и Тонони протестировали свой метод на 48 пациентах, у которых был поврежден мозг, но которые были отзывчивыми и бодрствующими, и выяснили, что в каждом отдельном случае метод позволяет определить наличие сознания у человека.
Затем группа применила метод к 81 пациенту, которые были минимально сознательными или находились в вегетативном состоянии. В первой группе, которая демонстрировала некоторые признаки нерефлексивного поведения, метод точно определил 36 человек в сознании из 38. Двух пациентов он ошибочно обозначил бессознательными. Из 43 пациентов в вегетативном состоянии, которые никак не реагировали, 34 были помечены как без сознания, но 9 – в сознании. Их мозги отвечали аналогично мозгам тех, кто был в сознании, а значит они были в сознании, но не могли сообщить об этом своим близким.
Текущие исследования направлены на стандартизацию и улучшение метода «zip-zap» для неврологических пациентов и распространение его на пациентов психиатров и педиатров. Рано или поздно ученые обнаружат определенный набор нейронных механизмов, которые порождают какой-нибудь сознательный опыт. Хотя эти выводы будут иметь важные клинические последствия и помогут семьям и друзьям, они не смогут ответить на фундаментальные вопросы: почему эти нейроны, а не те? Почему на этой частоте, а не на той? Волнующая всех тайна заключается в том, как и почему любые организованные кусочки активного вещества порождают сознательные ощущения. В конце концов, мозг, как и любой другой орган, подчиняется таким же законам физики, как и сердце, и почки. Что делает их различными? Какая биофизика превращает серую массу, серое вещество в грандиозный техниколор и богатство звука, которым наделен наш повседневный опыт общения с этим миром?
В конечном итоге нам нужна удовлетворительная научная теория сознания, которая предскажет, при каких условиях любая отдельно взятая физическая система – будь то сложная схема нейронов или кремниевых транзисторов – начинает переживать в прямом смысле этого слова. Почему качество этих переживаний будет отличаться? Почему ясное голубое небо так отличается от визга плохо настроенной скрипки? Есть ли функция у этих различий в переживаниях, и если да, то какая? Такая теория позволит нам определить, какие переживания будут у отдельно взятой системы. До ее появления любые разговоры о машинном сознании будут основаны исключительно на нашей интуиции, которая, как показывает научная история, ненадежный проводник.
Особо ожесточенные дебаты разгорелись вокруг двух самых популярных теорий сознания. Одна из них – теория глобального нейронного пространства (GNW), разработанная психологом Бернардом Баарсом и нейробиологами Станисласом Дехане и Жан-Пьером Шангьё. Теория начинается с постулата о том, что когда вы что-то осознаете, к этой информации получают доступ множество разных частей вашего мозга. Если, с другой стороны, вы действуете неосознанно, информация локализуется в конкретной сенсорно-двигательной системе, участвующей в процессе. К примеру, когда вы быстро печатаете, вы делаете это на автомате. Спросить вас, как вам это удается, и вы не сможете ответить: вы практически не имеете сознательного доступа к этой информации, и она оказывается сосредоточенной в схемах мозга, которые связывают ваши глаза с быстрым движением пальцев.
В направлении фундаментальной теории
Согласно GNW, сознание возникает из определенного типа обработки информации – знакомого с первых дней искусственного интеллекта, когда специализированные программы получили доступ к небольшим, разделенным репозиториям с информацией. Независимо от данных, записанных на этой «доске», стали доступны различные вспомогательные процессы: рабочая память, язык, модуль планирования и так далее. По GNW, сознание возникает, когда входящая сенсорная информация, записанная на такой доске, широко транслируется в разные когнитивные системы – которые обрабатывают эти данные для беседы, сохранения, воспоминания или осуществления действия.
Поскольку на этой доске не так много места, мы можем осознавать одновременно не так много информации. Сеть нейронов, передающих эти сообщения, как полагают, находится в лобной и теменной долях. После того, как разреженные данные транслируются сети и становятся доступными глобально, информация становится осознанной. То есть, субъект ее осознает. Хотя современные машины пока не достигли такого уровня когнитивной сложности, это лишь вопрос времени. GNW подразумевает, что компьютеры будущего будут сознательными.
Теория интегрированной информации (IIT), разработанная Тонони и его коллегами, включая меня, имеет совершенно другую отправную точку: опыт сам по себе. Любой опыт обладает определенными существенными свойствами. Он внутренний, существует только для субъекта как для «владельца», он структурирован (желтый автобус тормозит перед перебегающей дорогу собакой), он конкретен – его можно отличить от другого сознательного опыта, как отдельный кадр в фильме. Кроме того, он единый и определенный. Когда вы сидите на парковой скамье в теплый, пригожий денек, наблюдая за игрой детей, разные части этого опыта – бриз, поющий у вас в волосах, радость от смеха вашего младенца – нельзя разделить на части, не утратив полноты этого опыта.
Тонони постулирует, что любой сложный и взаимосвязанный механизм, структура которого кодирует множество причинно-следственных связей, будет обладать этими свойствами – и, следовательно, будет имеет некоторый уровень сознания. Если же, как мозжечку, этому механизму не хватает интеграции и комплексности, он ничего не осознает. По IIT, сознание это внутренняя причинно-следственная сила, которой обладают сложные механизмы вроде человеческого мозга.
IIT также предсказывает, что сложное моделирование человеческого мозга, работающего на цифровом компьютере, не может быть сознательным — даже если оно разговаривает так, что не отличить от реального человека. Подобно тому, как моделирование массивного гравитационного притяжения черной дыры не будет деформировать пространство-время вокруг компьютера, программирование сознания никогда не создаст сознательный компьютер.
Перед нами стоит две задачи. Одна из них состоит в том, чтобы использовать все более совершенные инструменты, наблюдать и исследовать нейроны, искать сознание в этих нейронах. Пройдут десятки лет, учитывая византийскую сложность центральной нервной системы. Другая задача в том, чтобы подтвердить или опровергнуть две доминирующие теории. Или создать лучшую на осколках этих двух и объяснить, как полуторакилограммовый орган дает нам полноту ощущений.


Исследователи обнаружили 1016 особых генов, связанных с интеллектом, подавляющее большинство которых ранее было неизвестно науке. Международная группа ученых провела крупномасштабное исследование и обнаружила 190 новых генных локусов и 939 новых генов, связанных с интеллектом, значительно расширив наше понимание наследственных основ когнитивной функции. Авторы работы поделились своим открытием в двух статьях журнала Nature Genetics.

Под руководством Даниэля Постумы из Амстердамского свободного университета (Нидерланды) ученые провели полногеномное исследование ассоциаций, в котором приняли участие почти 270 000 человек разных полов, возрастов и рас. Всем им было предложено пройти нейрокогнитивное тестирование для определения уровня интеллекта. После этого ученые провели сравнение результатов с ДНК участников и таким образом определи какие гены связаны с когнитивной функцией.
Из более чем 9 миллионов обнаруженных в образцах изменений команда Постумы выявила в ДНК-коде 205 участков, связанных с интеллектом (до этого только 15 из них были изолированы) и 1016 конкретных генов (из которых ранее были обнаружены лишь 77).
По словам исследователей, обнаруженные гены не только связаны с интеллектом, но еще и выполняют защитную функцию. Ученые обнаружили у них обратную корреляцию с болезнью Альцгеймера, расстройством дефицита внимания, гиперактивности, депрессивными симптомами и шизофренией. В то же время, у них была обнаружена корреляция с аутизмом, а также продолжительностью жизни. Ранее уже выносились предположения о том, что умные люди будут жить дольше.
«Наши результаты указывают на совпадение генетических процессов, связанных как с когнитивным функционированием, так и с неврологическими и психиатрическими расстройствами, что дает возможность на размышление о возможной взаимосвязи процессов, вызывающий эти корреляции», — сообщают ученые.
«Эти результаты важны для понимания биологических основ когнитивного функционирования и способствуют пониманию связанных с ними неврологических и психических расстройств».
Работа ученых основывается на аналогичных исследованиях, результаты которых были опубликованы в прошлом году. Исследования тогда проводила та же группа специалистов. На тот момент ученые смогли определить только 40 новых генов, связанных с интеллектом, поэтому в этом году анализ охватил более крупную выборку людей.
В отдельном исследовании, которое также возглавлял Постхума ученые провели еще одно большое полногеномное исследование ассоциаций. На этот раз в нем приняло участие почти 450 000 человек. В рамках эксперимента специалисты определи 136 геномно-значимых локусов, связанных с невротизмом, а также 599 связанных с ними генов.
Из общего числа выявленных локусов 124 оказались совершенно новыми для науки. При этом если учесть, что до этого момента с невротизмом связывали лишь 16 локусов, открытие ученых становится важным шагом к нашему понимаю того, что именно движет развитием таких расстройств, как депрессия, гнев и шизофрения.
Со слов ученых, существует два разных генетических «подкластера» невротизма: один относится к «депрессивному аффекту», второй – состоянию беспокойства.
Несмотря на то, что для полного понимания картины того, как все это работает ученым потребуется еще какое-то время, исследователи говорят, что теперь у них появились данные и проверяемые функциональные гипотезы, которые помогут разобраться в нейробиологии невротизма.


Вы встречаете конец длинного дня в своей квартире в начале 2040-х годов. Вы хорошо поработали и решаете передохнуть. «Время фильмов!», говорите вы. Дом отвечает на ваши позывы. Стол распадается на сотни крошечных частей, которые заползают под вас и принимают форму кресла. Экран компьютера, за которым вы работали, растекается по стене и превращается в плоскую проекцию. Вы расслабляетесь в кресле и через несколько секунд уже смотрите фильм в домашнем кинотеатре, все в тех же четырех стенах. Кому нужно больше одной комнаты?
Это мечта работающих над «программируемой материей».

В своей последней книге об искусственном интеллекте Макс Тегмарк проводит различие между тремя уровнями вычислительной сложности для организмов. Жизнь 1.0 — это одноклеточные организмы вроде бактерий; для нее аппаратное обеспечение неотличимо от программного. Поведение бактерий закодировано в ее ДНК; ничему новому она научиться не может.
Жизнь 2.0 — это жизнь людей в спектре. Мы отчасти застряли в своем оборудовании, но можем менять собственную программу, делая выбор в процессе обучения. Например, можем выучить испанский вместо итальянского. Подобно управлению пространством на смартфоне, аппаратура мозга позволяет загружать определенный набор «покетов», но в теории вы можете изучать новое поведение, не меняя базовый генетический код.
Жизнь 3.0 отходит от этого: существа могут менять как аппаратную, так и программную оболочку при помощи обратной связи. Тегмарк видит в этом истинный искусственный интеллект — как только он научится менять свой базовый код, произойдет взрыв интеллекта. Возможно, благодаря CRISPR и другим методам редактирования генов, мы сможем использовать собственное «программное обеспечение» для изменения собственного «устройства».
Программируемая материя переносит эту аналогию на предметы нашего мира: что, если ваш диван смог бы «научиться», как стать столом? Что, если вместо армии швейцарских ножей с десятками инструментов, вы обзавелись бы единственным инструментом, который «знал» бы, как стать любым другим инструментом для ваших нужд, по вашей команде? В переполненных городах будущего на смену домам могли бы прийти апартаменты, в которых была бы одна комната. Это позволило бы сэкономить пространство и ресурсы.
Во всяком случае таковы мечты.
Поскольку создавать и производить отдельные устройства так сложно, нетрудно предположить, что описанные выше штуки, которые могут превращаться во много разных предметов, будут чрезвычайно сложными. Профессор Скайлар Тиббитс из Массачусетского технологического института называет это 4D-печатью. Его исследовательская группа определила ключевые ингредиенты для самостоятельной сборки как простой набор отзывчивых «кирпичиков», энергии и взаимодействий, из которых можно воссоздать практически любой материал и процесс. Самосборка обещает прорывы во многих отраслях, от биологии до материаловедения, информатики, робототехники, производства, транспортировки, инфраструктуры, строительства, искусства и многого другого. Даже в кулинарии и освоении космоса.
Эти проекты все еще в зачаточном состоянии, но «лаборатория самостоятельной сборки» (Self-Assembly Lab) Тиббитса и другие уже закладывают основы для их развития.
Например, есть проект по самосборке сотовых телефонов. На ум приходят жуткие фабрики, на которых круглосуточно самостоятельно собираются мобильные телефоны из 3D-печатных частей, не требуя вмешательства людей или роботов. Едва ли такие телефоны будут улетать с полок как горячие пирожки, но стоимость производства в рамках такого проекта будет ничтожной. Это доказательство концепции.
Одним из основных препятствий, которые необходимо преодолеть при создании программируемой материи, является подбор правильных фундаментальных блоков. Важен баланс. Чтобы создать мелкие детали, нужны не очень большие «кирпичики», иначе конечная конструкция будет выглядеть комковато. Из-за этого строительные блоки могут быть бесполезными для некоторых применений — например, если нужно создать инструменты для тонких манипуляций. С большими кусками может быть сложно смоделировать ряд текстур. С другой стороны, если части слишком малы, могут возникнуть другие проблемы.
Представьте себе установку, в которой каждая деталь представлена небольшим роботом. У робота должен быть источник питания и мозг или по крайней мере какой-то генератор сигналов и процессор сигналов, все в одном компактном блоке. Можно вообразить, что ряд текстур и натяжений можно моделировать, изменяя силу «связи» между отдельными единицами — стол должен быть чуть тверже, чем ваша кровать.
Первые шаги в этом направлении были сделаны теми же, кто разрабатывает модульных роботов. Очень много групп ученых работают над этим, включая MIT, Лозанну и Университет Брюсселя.
В новейшей конфигурации отдельный робот выступает в качестве центрального отдела, принимающего решения (можете называть его мозгом), а дополнительные роботы могут присоединяться по необходимости к этому центральному отделу, если нужно изменить форму и структуру общей системы. Сейчас в системе всего десять отдельных единиц, но, опять же, это доказательство концепции того, что модульной системой роботов можно управлять; возможно, в будущем небольшие версии этой же системы лягут в основу компонентов для Материала 3.0.
Легко представить, как при помощи алгоритмов машинного обучения эти рои роботов учатся преодолевать препятствия и реагировать на изменение окружающей среды легче и быстрее отдельного робота. Например, система роботов могла бы быстро перестраиваться, чтобы пуля проходила без повреждений, формируя таким образом неуязвимую систему.
Говоря о робототехнике, форма идеального робота была предметом многих дискуссий. Одно из недавних крупных соревнований по робототехнике, проведенном DARPA, Robotics Challenge выиграл робот, который может адаптироваться. Он победил известного гуманоида Boston Dynamics ATLAS простым добавлением колеса, которое позволило ему кататься.
Вместо того чтобы строить роботов в форме людей (хотя иногда это полезно), можно позволить им эволюционировать, развиваться, искать идеальную форму для выполнения поставленной задачи. Это будет особенно полезно в случае бедствия, когда дорогие роботы смогут заменить людей, но должны будут готовы адаптироваться к непредсказуемым обстоятельствам.
Многие футурологи представляют возможность создания крошечных наноботов, способных создавать что угодно из сырья. Но это не обязательно. Программируемая материя, которая может отвечать и реагировать на окружающую среду, будет полезна в любых промышленных применениях. Представьте себе трубу, которая может укрепляться или ослабляться по необходимости либо менять направление течения по команде. Либо ткань, которая может становиться более или менее плотной в зависимости от условий.
Мы все еще далеки от времен, когда наши кровати смогут трансформироваться в велосипеды. Возможно, традиционное нетехнологичное решение, как это часто бывает, будет гораздо более практичным и экономичным. Но поскольку человек пытается засунуть чип в каждый несъедобный объект, неодушевленные объекты будут становиться чуть более одушевленными с каждым годом.


2018 год обещает быть богатым на интересные выставки, посвященные инновационным технологиям. Если вы следите за трендами в сфере hi-tech, стоит побывать хотя бы на одной из них. А сделать поездку необременительной для бюджета поможет кредитная карта: быстрое онлайн-решение за 5 минут, и финансовый вопрос больше не мешает вам держать руку на пульсе событий.

Inventions Geneva 2018

Международная выставка изобретений, новой техники и продукции

11-15 апреля

Женева, Швейцария
Один из крупнейших в мире салонов изобретений, который начал работу еще в далеком 1972 году, традиционно держит марку: сюда допускают только экспонаты, уже получившие патенты. На площадях свыше 8000 кв. м свои новейшие разработки представляют как государственные, так и частные компании, среди которых есть и участники из России.
ITEX 2018
Международная выставка инноваций и новых технологий

10-12 мая

Куала-Лумпур, Малайзия
В этом году анонсируется участие 23 стран более чем с 1000 изобретений, что неудивительно: медали ITEX имеют вес, особенно при внедрении инноваций. Прогнозируется аншлаг, поскольку представленные разработки заинтересуют представителей самых разных сфер: от сельского хозяйства до космической промышленности. Обязательно будет и российская экспозиция.
CEBIT 2018

Международная выставка решений, продуктов и услуг из всех областей

информационно-коммуникационных технологий

11-15 июня

Ганновер, Германия
CEBIT привлекает экспонатами, а также уникальными семинарами и конференциями по вопросам информационных технологий. Общаясь со специалистами в узких областях, посетители получают представление о самых современных тенденциях и разработках. На выставке можно наладить контакты и с солидными игроками ИТ-индустрии, и со стартаперами, вынашивающими самые смелые идеи, – здесь рады всем.
INST 2018
Международная выставка изобретений и инновационных технологий

27-29 сентября

Тайбэй, Тайвань
Не секрет, что Азия находится на передних рубежах высоких технологий, поэтому побывать на крупнейшей азиатской площадке для торговли интеллектуальной собственностью — познавательно. Тем более что спектр тем чрезвычайно широк: строительство, медицина, сельское хозяйство, тяжелая и легкая промышленность, экология, коммуникации и многое другое.
CEATEC Japan 2018

Международная выставка передовых технологий

16-19 октября

Япония, Тиба
После объединения двух крупных японских выставок — информационных технологий и электроники — мероприятие стало масштабным, поэтому для удобства участников и посетителей его разделили на тематические секторы. Есть кластеры, посвященные бытовой технике, бизнес-решениям, индустриальному оборудованию. Специфика выставки — акцент на способы решения глобальных проблем при помощи высоких технологий.
Подобрали что-то интересное для себя? Желаем насыщенной и плодотворной поездки!

[1..4]


Папки